Kamis, 08 November 2018

DASAR - DASAR PROBALITAS


DASAR – DASAR PROBALITAS
Pengertian Probabilitas adalah suatu nilai yang digunakan untuk mengukur tingkat terjadinya suatu kejadian yang acak. Kata probabilitas itu sendiri sering disebut dengan peluang atau kemungkinan. Probabilitas secara umum merupakan peluang bahwa sesuatu akan terjadi.
Probabilitas suatu kejadian adalah angka yang menunjukkan kemungkinan terjadinya suatu kejadian. Nilainya di antara 0 dan 1. Kejadian yang mempunyai nilai probabilitas 1 adalah kejadian yang pasti terjadi atau sesuatu yang telah terjadi. Misalnya matahari yang masih terbit di timur sampai sekarang. Sedangkan suatu kejadian yang mempunyai nilai probabilitas 0 adalah kejadian yang mustahil atau tidak mungkin terjadi. Misalnya seekor kambing melahirkan seekor sapi.
Probabilitas/Peluang suatu kejadian A terjadi dilambangkan dengan notasi P(A), p(A), atau Pr(A). Sebaliknya, probabilitas [bukan A] atau komplemen A, atau probabilitas suatu kejadian A tidak akan terjadi, adalah 1-P(A). Sebagai contoh, peluang untuk tidak munculnya mata dadu enam bila sebuah dadu bersisi enam digulirkan adalah .
Dalam mempelajari probabilitas, ada tiga kata kunci yang harus diketahui:
·       Eksperimen,
·       Hasil (outcome)
·       Kejadian atau peristiwa (event)

Pendekatan Perhitungan Probabilitas
Ada dua pendekatan dalam menghitung probabilitas yaitu pendekatan yang bersifat objektif dan subjektif.Probabilitas objektif dibagi menjadi dua, yaitu :
1.    Pendekatan Klasik
Probabilitas diartikan sebagai hasil bagi dari banyaknya peristiwa yang dimaksud dengan seluruh peristiwa yang mungkin menurut pendekatan klasik, probabilitas dirumuskan : 
keterangan :
P(A) = probabilitas terjadinya kejadian A.
x = peristiwa yang dimaksud.
n = banyaknya peristiwa.
Contoh :
Dua buah dadu dilempar ke atas secara bersamaan. Tentukan probabilitas munculnya angka berjumlah 5.
Penyelesaian :
Hasil yang dimaksud (x) = 4, yaitu (1,4), (4,1), (2,3). (3,2)
Hasil yang mungkin (n) = 36, yaitu (1,1), (1,2), (1,3). ….., (6,5), (6,6).
= 0,11
2.    Probabilitas Subjektif
Menurut pendekatan subjektif, probabilitas diartikan sebagai tingkat kepercayaan individu yang didasarkan pada peristiwa masa lalu yang berupa terkaan saja.
Dari pengertian-pengertian tersebut, dapat disusun suatu pengertian umum mengenai probabilitas, yaitu sebagai berikut Probabilitas adalah suatu indeks atau nilai yang digunakan untuk menentukan tingkat terjadinya suatu kejadian yang bersifat random (acak).
Oleh karena probabilitas merupakan suatu indeks atau nilai maka probabilitas memiliki batas-batas yaitu mulai dari 0 sampai dengan 1 ( 0 £ P £ 1).
–          Jika P = 0, disebut probabilitas kemustahilan, artinya kejadian atau peristiwa tersebut tidak akan terjadi.
–          Jika P = 1, disebut probabilitas kepastian, artinya kejadian atau peristiwa tersebut pasti terjadi.
–       Jika 0 < P < 1, disebut probabilitas kemungkinan, artinya kejadian atau peristiwa tersebut dapat atau tidak dapat terjadi.

Aturan Penjumlahan :
a.    Kejadian Saling Meniadakan :
Dua peristiwa atau lebih disebut saling meniadakan jika kedua atau lebih peristiwa itu tidak dapat terjadi pada saat yang bersamaan. Jika peristiwa A dan B saling meniadakan, probabilitas terjadinya peristiwa tersebut adalah
P(A atau B) = P(A) + P(B) atau
P(A È B) = P(A) + P(B)
Contoh :
Sebuah dadu dilemparkan ke atas, peritiwanya adalah
A = peristiwa mata dadu 4 muncul.
B = peristiwa mata dadu lebih kecil dari 3 muncul.
Tentukan probabilitas dari kejadian berikut !
– Mata dadu 4 atau lebih kecil dari 3 muncul!
Penyelesaian :
P(A) = 1/6
P(B) = 2/6
P(A atau B) = P(A) + P(B)
= 1/6 + 2/6
= 0,5
b.    Kejadian Tidak Saling Meniadakan :
Dua peristiwa atau lebih disebut peristiwa tidak saling meniadakan apabila  kedua peristiwa atau lebih tersebut dapat terjadi pada saat yang bersamaan. Jika dua peristiwa A dan B tidak saling meniadakan, probabilitas terjadinya peristiwa tersebut adalah
P(A atau B) = P(A) + P(B) – P(A dan B)
P(A È B) = P(A) + P(B) – P(A Ç B)
Jika 3 peristiwa A, B, dan C tidak saling meniadakan, probabilitas terjadinya peristiwa tersebut adalah
P(A È B È C) = P(A) + P(B) + P(C) – P(A Ç B) – P(A Ç C) – P(B Ç C) + P(A Ç B Ç C)
Contoh :
Dua buah dadu dilemparkan bersamaan, apabila :
A = peristiwa mata (4, 4) muncul.
B = peristiwa mata lebih kecil dari (3, 3) muncul.
Tentukan probabilitas P(A atau B) !
Penyelesaian :
P(A) = 1/36
P(B) = 14/36
P(A Ç B) = 0
P(A atau B) = P(A) + P(B) – P(A Ç B)
= 1/36 + 14/36 – 0
= 0,42
Aturan Perkalian :
a.    Kejadian Tak Bebas :
Dua peristiwa atau lebih disebut kejadian tidak bebas apabila peristiwa yang satu dipengaruhi atau tergantung pada peritiwa  lainnya. Probabilitas peristiwa tidak saling bebas dapat pula dibedakan atas tiga macam, yaitu yaitu probabilitas bersyarat, gabungan, dan marjinal.
·         Probabilitas Bersyarat :
Probabilitas bersyarat peristiwa tidak saling bebas adalah probabilitas terjadinya suatu peristiwa  dengan syarat peristiwa  lain harus terjadi dan peristiwa-peristiwa tersebut saling mempengaruhi. Jika peristiwa B bersyarat terhadap A, probabilitas terjadinya periwtiwa tersebut adalah

P(B/A) dibaca probabilitas terjadinya B dengan syarat peristiwa A terjadi.
Contoh :
Sebuah kotak berisikan 11 bola dengan rincian :
5 buah bola putih bertanda +
1 buah bola putih bertanda –
3 buah bola kuning bertanda +
2 buah bola kuning bertanda –
Seseorang mengambil sebuah bola kuning dari kotak
– Berapa probabilitas bola itu bertanda +?
Penyelesaian :
Misalkan : A = bola kuning
B+ = bola bertanda positif
B = bola bertanda negatif.
P(A) = 5/11
P(B+ Ç A) = 3/11
·         Probabilitas tidak Gabungan :
Probabilitas gabungan peritiwa saling bebas adalah probabilitas terjadinya dua atau lebih peristiwa secara berurutan (bersamaan) dan peristiwa-peristiwa itu saling mempengaruhi.
Jika dua peristiwa A dan B gubungan, probabilitas terjadinya peristiwa tersebut adalah
P(A dan B) = P(A Ç B) = P(A) x P(B/A)
Jika tiga buah peristiwa A, B, dan C gabungan, probabilitas terjadinya peristiwa tersebut adalah
P(A Ç B Ç C) = P(A) x P(B/A) x P(C/A Ç B)
Contoh :
Dari satu set kartu bridge berturut-turut diambil kartu itu sebanyak 2 kali secara acak. Hitunglah probabilitasnya kartu king (A) pada pengambilan pertama dan as(B) pada pengambilan kedua, jika kartu pada pengambilan pertama tidak dikembalikan !
Penyelesaian :
(A) = pengambilan pertama keluar kartu king.
P(A) = 4/52
(B/A) = pengambilan kedua keluar kartu as
P(B/A) = 4/51
P(A Ç B) = P(A) x P(B/A)
= 4/52 x 4/51
= 0,006
·         Probabilitas Marjinal :
Probabilitas marjinal peristiwa tidak saling bebas adalah probabilitas terjadinya suatu peristiwa yang tidak memiliki hubungan dengan terjadinya peristiwa lain dan peristiwa tersebut saling mempengaruhi. Jika dua peristiwa A adalah marjinal, probabilitas terjadinya peristiwa A tersebut adalah
P(A) = SP(B Ç A)
SP(Ai) x P(B/Ai), i = 1, 2, 3, …..
Contoh :
Sebuah kotak berisikan 11 bola dengan rincian :
5 buah bola putih bertanda +
1 buah bola putih bertanda –
3 buah bola kuning bertanda +
2 buah bola kuning bertanda –
Tentukan probabilitas memperoleh sebuah bola putih !
Penyelesaiana :
Misalkan : A = bola putih
B+ = bola bertanda positif
B = bola bertanda negatif
P(B+ Ç A) = 5/11
P(B Ç A) = 1/11
P(A) = P(B+ Ç A) + P(B Ç A)
= 5/11 + 1/11
= 6/11
b.    Kejadian Bebas :
Dua kejadian atau lebih dikatakan merupakan kejadian bebas apabila terjadinya kejadian tersebut tidak saling mempengaruhi. Dua kejadian A dan B dikatakan bebas, kalau kejadian A tidak mempengaruhi B atau sebaliknya. Jika A dan B merupakan kejadian bebas, maka P(A/B) = P(A) dan P(B/A) = P(B)
P(A Ç B) = P(A) P(B) = P(B) P(A)
Contoh :
Satu mata uang logam Rp. 50 dilemparkan ke atas sebanyak dua kali. Jika A1 adalah lemparan pertama yang mendapat gambar burung(B), dan A2 adalah lemparan kedua yang mendapatkan gambar burung(B), berapakah P(A1 Ç A2)!
Penyelesaian :
Karena pada pelemparan pertama hasilnya tidak mempengaruhi pelemparan kedua dan P(A1) = P(B) = 0,5 dan P(A2) = P(B) = 0,5, maka P(A1 Ç A2) = P(A1) P(A2) = P(B) P(B) = 0,5 x 0,5 = 0,25.
Rumus Bayes :
Jika dalam suatu ruang sampel (S) terdapat beberapa peristiwa saling lepas, yaitu A1, A2, A3, …., An yang memiliki probabilitas tidak sama dengan nol dan bila ada peritiwa lain (misalkan X) yang mungkin dapat terjadi pada peristiwa-peristiwa A1, A2, A3, …., A maka  probabilitas terjadinya peristiwa-peristiwa A1, A2, A3, …., A dengan diketahui peristiwa X tersebut adalah
Contoh :
Tiga kotak masing-masing memiliki dua laci. Didalam laci-laci tersebut terdapat sebuah bola. Didalam kotak I terdapat bola emas, dalam kotak II terdapat bola perak, dan dalam kotak III terdapat bola emas dan perak. Jika diambil sebuah kotak dan isinya bola emas, berapa probabilitas bahwa laci lain berisi bola perak?
Penyelesaian :
Misalkan : A1 peristiwa terambil kotak I
A2 peristiwa terambil kotak II
A3 peristiwa terambil kotak III
X  peristiwa laci yang dibuka berisi bola emas
Kotak yang memenuhi pertanyaan adalah kotak III (P(A3/X)).
P(A1) = 1/3              P(X/A1) = 1
P(A2) = 1/3              P(X/A2) = 0
P(A3) = 1/3              P(X/A3) = ½

Tidak ada komentar:

Posting Komentar