Jumat, 23 November 2018

KORELASI DAN REGRESI LINIER SEDERHANA


korelasi
korelasi, juga disebut koefisien korelasi, adalah nilai yang menunjukkan kekuatan dan arah hubungan linier antara dua peubah acak (random variable).
Salah satu jenis korelasi yang paling populer adalah koefisien korelasi momen-produk Pearson, yang diperoleh dengan membagi kovarians kedua variabel dengan perkalian simpangan bakunya. Meski memiliki nama Pearson, metode ini pertama kali diperkenalkan oleh Francis Galton.
Koefisien korelasi momen-produk Pearson
Korelasi linier antara 1000 pasang pengamatan. Data digambarkan pada bagian kiri bawah dan koefisien korelasinya ditunjukkan pada bagian kanan atas. Setiap titik pengamatan berkorelasi maksimum dengan dirinya sendiri, sebagaimana ditunjukkan pada diagonal (seluruh korelasi = +1).
Korelasi ρX, Y antara dua peubah acak X dan Y dengan nilai yang diharapkan μX dan μY dan simpangan baku σX dan σY didefinisikan sebagai:
ρ X , Y = c o v ( X , Y ) σ X σ Y = E ( ( X − μ X ) ( Y − μ Y ) ) σ X σ Y . {\displaystyle \rho _{X,Y}={\mathrm {cov} (X,Y) \over \sigma _{X}\sigma _{Y}}={E((X-\mu _{X})(Y-\mu _{Y})) \over \sigma _{X}\sigma _{Y}}.} Karena μX = E(X), σX2 = E(X2) − E2(X) dan demikian pula untuk Y, maka dapat pula ditulis ρ X , Y = E ( X Y ) − E ( X ) E ( Y ) E ( X 2 ) − E 2 ( X )   E ( Y 2 ) − E 2 ( Y ) {\displaystyle \rho _{X,Y}={\frac {E(XY)-E(X)E(Y)}{{\sqrt {E(X^{2})-E^{2}(X)}}~{\sqrt {E(Y^{2})-E^{2}(Y)}}}}}
Korelasi dapat dihitung bila simpangan baku finit dan keduanya tidak sama dengan nol. Dalam pembuktian ketidaksamaan Cauchy-Schwarz, koefisien korelasi tak akan melebihi dari 1 dalam nilai absolut. Korelasi bernilai 1 jika terdapat hubungan linier yang positif, bernilai -1 jika terdapat hubungan linier yang negatif, dan antara -1 dan +1 yang menunjukkan tingkat dependensi linier antara dua variabel. Semakin dekat dengan -1 atau +1, semakin kuat korelasi antara kedua variabel tersebut.
Koefisien korelasi non-parametrik
Koefisien korelasi Pearson merupakan statistik parametrik, dan ia kurang begitu menggambarkan korelasi bila asumsi dasar normalitas suatu data dilanggar. Metode korelasi non-parametrik seperti ρ Spearman and τ Kendall berguna ketika distribusi tidak normal. Koefisien korelasi non-parametrik masih kurang kuat bila dibandingkan dengan metode parametrik jika asumsi normalitas data terpenuhi, namun cenderung memberikan hasil distrosi ketika asumsi tersebut tak terpenuhi.
Metode pengukuran yang lain untuk mengetahui dependensi antara dua peubah acak
Untuk mendapatkan suatu pengukuran mengenai dependensi data (juga nonlinier), dapat digunakan rasio korelasi yang mampu mendeteksi hampir segala dependensi fungsional.
Kopula dan korelasi
Banyak orang yang keliru menganggap bahwa informasi yang diberikan dari sebuh koefisien korelasi sudah cukup mendefinisikan struktur ketergantungan (dependensi) antara peubah acak. Namun untuk mengetahui adanya ketergantungan antara peubah acak harus dipertimbangkan pula kopula antara keduanya. Koefisien korelasi dapat didefinisikan sebagai struktur ketergantungan hanya pada beberapa kasus, misalnya dalam fungsi distribusi kumulatif pada distribusi normal multivariat.

Matriks korelasi
Matriks korelasi n peubah acak X1, ..., Xn adalah n  ×  n matrik dimana i,j adalah corr(XiXj). Jika ukuran korelasi yang digunakan adalah koefisien momen-produk, matriks korelasi akan sama dengan matriks kovarians peubah acak yang telah distandarkan Xi /SD(Xi) untuk i = 1, ..., n. Sehingga, matriks korelasi merupakan matriks definit tak-negatif.

Analisis Regresi Linear Sederhana
Regresi Linear Sederhana adalah Metode Statistik yang berfungsi untuk menguji sejauh mana hubungan sebab akibat antara Variabel Faktor Penyebab (X) terhadap Variabel Akibatnya. Faktor Penyebab pada umumnya dilambangkan dengan X atau disebut juga dengan Predictor sedangkan Variabel Akibat dilambangkan dengan Y atau disebut juga dengan Response. Regresi Linear Sederhana atau sering disingkat dengan SLR (Simple Linear Regression) juga merupakan salah satu Metode Statistik yang dipergunakan dalam produksi untuk melakukan peramalan ataupun prediksi tentang karakteristik kualitas maupun Kuantitas.
Contoh Penggunaan Analisis Regresi Linear Sederhana dalam Produksi antara lain :
  1. Hubungan antara Lamanya Kerusakan Mesin dengan Kualitas Produk yang dihasilkan
  2. Hubungan Jumlah Pekerja dengan Output yang diproduksi
  3. Hubungan antara suhu ruangan dengan Cacat Produksi yang dihasilkan.
Model Persamaan Regresi Linear Sederhana adalah seperti berikut ini :

Y = a + bX

Dimana :
Y = Variabel Response atau Variabel Akibat (Dependent)
X = Variabel Predictor atau Variabel Faktor Penyebab (Independent)
a = konstanta
b = koefisien regresi (kemiringan); besaran Response yang ditimbulkan oleh Predictor.
Nilai-nilai a dan b dapat dihitung dengan menggunakan Rumus dibawah ini :
a =   (Σy) (Σx²) – (Σx) (Σxy)
.                n(Σx²) – (Σx)²
b =   n(Σxy) – (Σx) (Σy)
.                n(Σx²) – (Σx)²
Berikut ini adalah Langkah-langkah dalam melakukan Analisis Regresi Linear Sederhana :
  1. Tentukan Tujuan dari melakukan Analisis Regresi Linear Sederhana
  2. Identifikasikan Variabel Faktor Penyebab (Predictor) dan Variabel Akibat (Response)
  3. Lakukan Pengumpulan Data
  4. Hitung  X², Y², XY dan total dari masing-masingnya
  5. Hitung a dan b berdasarkan rumus diatas.
  6. Buatkan Model Persamaan Regresi Linear Sederhana.
  7. Lakukan Prediksi atau Peramalan terhadap Variabel Faktor Penyebab atau Variabel Akibat.

Tidak ada komentar:

Posting Komentar